En geometría son tridimensionales las siguientes figuras geométricas:
POLIEDROS DE CARAS PLANAS:
- Pirámides
- Cubo
- Prismas
SUPERFICIES CURVAS:
- Cilindro
- Conos
- Esfera ó 3-Esfera
Ya que todas ellas pueden ser embebidas en un espacio euclídeo de tres dimensiones. Sin embargo, hay que señalar que técnicamente la esfera, el cono o el cilindro son variedades bidimensionales (solo la cáscara) ya que los puntos interiores a ellos no son estrictamente parte de los mismos. Sólo por una abuso de lenguaje o extensión del mismo informalmente se habla de esferas, cilindros o conos incluyendo el interior de los mismos.
Por otra parte existe la hiperesfera tridimensional (3-variedad) pero no es la cáscara de una bola sino la compactificación de con un punto, así como la 2-esfera es para el plano euclídeo .